KIF2A regulates the spindle assembly and the metaphase I-anaphase I transition in mouse oocyte

نویسندگان

  • Ming-Huang Chen
  • Yu Liu
  • Ya-Long Wang
  • Rui Liu
  • Bai-Hui Xu
  • Fei Zhang
  • Fei-Ping Li
  • Lin Xu
  • Yan-Hong Lin
  • Shu-Wen He
  • Bao-Qiong Liao
  • Xian-Pei Fu
  • Xiao-Xue Wang
  • Xiang-Jun Yang
  • Hai-Long Wang
چکیده

KIF2A, a member of the kinesin-13 family, has been reported to play a role in spindle assembly in mitosis. However, its function in mammalian meiosis remains unknown. In this research, we examined the expression, localization and function of KIF2A during mouse oocyte meiosis. KIF2A was expressed in some key stages in mouse oocyte meiosis. Immunofluorescent staining showed that KIF2A distributed in the germinal vesicle at the germinal vesicle stage and as the spindle assembling after meiosis resumption, KIF2A gradually accumulated to the entire spindle. The treatment of oocytes with taxol and nocodazole demonstrated that KIF2A was co-localized with α-tubulin. Depletion of KIF2A by specific short interfering (si) RNA injection resulted in abnormal spindle assembly, failure of spindle migration, misaligned chromosomes and asymmetric cell division. Meanwhile, SKA1 expression level was decreased and the TACC3 localization was disrupted. Moreover, depletion of KIF2A disrupted the actin cap formation, arrested oocytes at metaphase I with spindle assembly checkpoint protein BubR1 activated and finally reduced the rate of the first polar body extrusion. Our data indicate that KIF2A regulates the spindle assembly, asymmetric cytokinesis and the metaphase I-anaphase I transition in mouse oocyte.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kif2a regulates spindle organization and cell cycle progression in meiotic oocytes

Kif2a is a member of the Kinesin-13 microtubule depolymerases. Here, we report the expression, subcellular localization and functions of Kif2a during mouse oocyte meiotic maturation. Immunoblotting analysis showed that Kif2a was gradually increased form GV to the M I stages, and then decreased slightly at the M II stage. Confocal microscopy identified that Kif2a localized to the meiotic spindle...

متن کامل

JMY is required for asymmetric division and cytokinesis in mouse oocytes.

JMY is a transcriptional co-factor of p53. Latest work has revealed that JMY is also an actin nucleation factor that regulates new filament assembly and activates Arp2/3 complex in somatic cells; however, roles of JMY in mouse oocyte are unknown. Here we showed the expression and functions of JMY during mouse oocyte meiotic maturation. JMY mRNA is expressed largely from germinal vesicle to meta...

متن کامل

Bub3 Is a Spindle Assembly Checkpoint Protein Regulating Chromosome Segregation during Mouse Oocyte Meiosis

In mitosis, the spindle assembly checkpoint (SAC) prevents anaphase onset until all chromosomes have been attached to the spindle microtubules and aligned correctly at the equatorial metaphase plate. The major checkpoint proteins in mitosis consist of mitotic arrest-deficient (Mad)1-3, budding uninhibited by benzimidazole (Bub)1, Bub3, and monopolar spindle 1(Mps1). During meiosis, for the form...

متن کامل

Xenopus oocyte meiosis lacks spindle assembly checkpoint control

The spindle assembly checkpoint (SAC) functions as a surveillance mechanism to detect chromosome misalignment and to delay anaphase until the errors are corrected. The SAC is thought to control mitosis and meiosis, including meiosis in mammalian eggs. However, it remains unknown if meiosis in the eggs of nonmammalian vertebrate species is also regulated by SAC. Using a novel karyotyping techniq...

متن کامل

Changing Mad2 Levels Affects Chromosome Segregation and Spindle Assembly Checkpoint Control in Female Mouse Meiosis I

The spindle assembly checkpoint (SAC) ensures correct separation of sister chromatids in somatic cells and provokes a cell cycle arrest in metaphase if one chromatid is not correctly attached to the bipolar spindle. Prolonged metaphase arrest due to overexpression of Mad2 has been shown to be deleterious to the ensuing anaphase, leading to the generation of aneuploidies and tumorigenesis. Addit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016